Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks

In this letter, we investigate learning forward dynamics models and multi-step prediction of state variables (long-term prediction) for contact-rich manipulation. The problems are formulated in the context of model-based reinforcement learning (MBRL). We focus on two aspects-discontinuous dynamics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-07, Vol.5 (3), p.4321-4328
Hauptverfasser: Khader, Shahbaz Abdul, Yin, Hang, Falco, Pietro, Kragic, Danica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we investigate learning forward dynamics models and multi-step prediction of state variables (long-term prediction) for contact-rich manipulation. The problems are formulated in the context of model-based reinforcement learning (MBRL). We focus on two aspects-discontinuous dynamics and data-efficiency-both of which are important in the identified scope and pose significant challenges to State-of-the-Art methods. We contribute to closing this gap by proposing a method that explicitly adopts a specific hybrid structure for the model while leveraging the uncertainty representation and data-efficiency of Gaussian process. Our experiments on an illustrative moving block task and a 7-DOF robot demonstrate a clear advantage when compared to popular baselines in low data regimes.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2020.2996067