Scalable quantum processor noise characterization
Measurement fidelity matrices (MFMs) (also called error kernels) are a natural way to characterize state preparation and measurement errors in near-term quantum hardware. They can be employed in post processing to mitigate errors and substantially increase the effective accuracy of quantum hardware....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement fidelity matrices (MFMs) (also called error kernels) are a natural way to characterize state preparation and measurement errors in near-term quantum hardware. They can be employed in post processing to mitigate errors and substantially increase the effective accuracy of quantum hardware. However, the feasibility of using MFMs is currently limited as the experimental cost of determining the MFM for a device grows exponentially with the number of qubits. In this work we present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion. Our method can also be used to characterize various types of correlation error. |
---|---|
ISSN: | 2331-8422 |