Automorphisms of Finite Quasi-Groups without Sub-Quasi-Groups
Finite quasi-groups without sub-quasi-groups are considered. It is shown that polynomially complete quasi-groups with this property are quasi-primal. The case in which the automorphism groups act transitively on these quasi-groups is considered. Quasi-groups of prime-power order defined on an arithm...
Gespeichert in:
Veröffentlicht in: | Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2020-04, Vol.53 (2), p.122-130 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finite quasi-groups without sub-quasi-groups are considered. It is shown that polynomially complete quasi-groups with this property are quasi-primal. The case in which the automorphism groups act transitively on these quasi-groups is considered. Quasi-groups of prime-power order defined on an arithmetic vector space over a finite field are also studied. Necessary conditions for a multiplication in this space given in coordinate form to determine a quasi-group are found. The case of a vector space over the two-element field is considered in more detail. A criterion for a multiplication given in coordinate form by Boolean functions to determine a quasi-group is obtained. Under certain assumptions, quasi-groups of order 4 determined by Boolean functions are described up to isotopy. Polynomially complete quasi-groups are important in that the problem of solving polynomial equations is NP-complete in such quasi-groups. This property suggests using them for protecting information, because cryptographic transformations are based on quasi-group operations. In this context, an important role is played by quasi-groups containing no sub-quasi-groups. |
---|---|
ISSN: | 1063-4541 1934-7855 |
DOI: | 10.1134/S106345412002003X |