Tough, high-strength PDAAM-co-PAAM hydrogels synthesized without a crosslinking agent

Hydrogels find a variety of uses across various fields, but their development might be limited by their high-cost, toxic chemical crosslinking and complicated reactions. To address these issues, we developed a tough, high-strength hydrogel of polydiacetone acrylamide-co-poly(acrylamide), prepared us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-08, Vol.55 (24), p.10878-10895
Hauptverfasser: Qiao, Liyuan, Liu, Cheng, Liu, Chengde, Cheng, Xitong, Li, Yizheng, Wang, Chenghao, Jian, Xigao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogels find a variety of uses across various fields, but their development might be limited by their high-cost, toxic chemical crosslinking and complicated reactions. To address these issues, we developed a tough, high-strength hydrogel of polydiacetone acrylamide-co-poly(acrylamide), prepared using acrylamide, diacetone acrylamide (DAAM) and ammonium persulfate in a one-step reaction. The multiple physical crosslinking networks endow hydrogel with excellent overall properties given appropriate DAAM levels. The tensile modulus, fractured strain, fractured stress and toughness of the developed D 1 A 9 hydrogel are, respectively, as high as 0.15 MPa, 21 mm/mm, 0.71 MPa and 7 MJ/m 2 . Its compressive modulus under a strain of 80% is 0.088 MPa, while its shear modulus at a shear frequency of 100 Hz is 0.071 MPa. At the same time, D 1 A 9 hydrogel exhibits a high self-recovery efficiency of 50% during two continuous cyclic tensile tests, with the efficiency increasing to 65% for hydrogel incubated at 50 °C for 2 h. Finally, cytocompatibility and excellent drug-releasing behavior of the hydrogel make it a candidate for biomedical use.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-020-04728-x