Exploring NEURAghe: A Customizable Template for APSoC-Based CNN Inference at the Edge

The NEURAghe architecture has proved to be a powerful accelerator for deep convolutional neural networks running on heterogeneous architectures based on Xilinx Zynq-7000 all programmable system-on-chips. NEURAghe exploits the processing system and the programmable logic available in these devices to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE embedded systems letters 2020-06, Vol.12 (2), p.62-65
Hauptverfasser: Meloni, Paolo, Loi, Daniela, Deriu, Gianfranco, Carreras, Marco, Conti, Francesco, Capotondi, Alessandro, Rossi, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The NEURAghe architecture has proved to be a powerful accelerator for deep convolutional neural networks running on heterogeneous architectures based on Xilinx Zynq-7000 all programmable system-on-chips. NEURAghe exploits the processing system and the programmable logic available in these devices to improve performance through parallelism, and to widen the scope of use-cases that can be supported. In this letter, we extend the NEURAghe template-based architecture to guarantee design-time scalability to multiprocessor SoCs with vastly different cost, size, and power envelope, such as Xilinx's Z-7007s, Z-7020, and Z-7045. The proposed architecture achieves state-of-the-art performance and cost effectiveness in all the analyzed configurations, reaching up to 335 GOps/s on the Z-7045.
ISSN:1943-0663
1943-0671
DOI:10.1109/LES.2019.2947312