An empirical evaluation of camera trap study design: How many, how long and when?
Camera traps deployed in grids or stratified random designs are a well‐established survey tool for wildlife but there has been little evaluation of study design parameters. We used an empirical subsampling approach involving 2,225 camera deployments run at 41 study areas around the world to evaluate...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2020-06, Vol.11 (6), p.700-713 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Camera traps deployed in grids or stratified random designs are a well‐established survey tool for wildlife but there has been little evaluation of study design parameters.
We used an empirical subsampling approach involving 2,225 camera deployments run at 41 study areas around the world to evaluate three aspects of camera trap study design (number of sites, duration and season of sampling) and their influence on the estimation of three ecological metrics (species richness, occupancy and detection rate) for mammals.
We found that 25–35 camera sites were needed for precise estimates of species richness, depending on scale of the study. The precision of species‐level estimates of occupancy (ψ) was highly sensitive to occupancy level, with 0.75) species, but more than 150 camera sites likely needed for rare (ψ |
---|---|
ISSN: | 2041-210X 2041-210X |
DOI: | 10.1111/2041-210X.13370 |