Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images
Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which cons...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Lee, Hyunhee Lim, Heuiseok Jo, Jaechoon |
description | Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet. |
doi_str_mv | 10.1155/2020/8273173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407983806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407983806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b594faf4fb26acbc892cea47bbfe2ee3549ef4bcc35fb9ce1e12c73dc19cb4b93</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY_UyyRy1aC9WCreAt7G5m29RmUzeJpf56U1Lw6Gnm8PAO8wbBJcF3hAgxoJjiQUJjRmJ2FPSIiFgoCI-P2x1THhLKPk6Ds6paYUyJIEkvmM_qJtuh0qHpps4LtUYjcOBVnX8DeoV6W_pPZEuPZjtXL6HKf3K3QA9e5Q7Nm6L04QwWBbgaMvTyhsaFWkB1HpxYta7g4jD7wfvT43z4HE6mo_HwfhIaFuE61EJyqyy3mkbKaJNIakDxWGsLFIAJLsFybQwTVksDBAg1McsMkUZzLVk_uO5yN778aqCq01XZeNeeTCnHsUxYgqNW3XbK-LKqPNh049tP_S4lON33lu57Sw-9tfym48vcZWqb_6evOg2tAav-NMVYyoj9As4XeDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407983806</pqid></control><display><type>article</type><title>Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Lee, Hyunhee ; Lim, Heuiseok ; Jo, Jaechoon</creator><contributor>Lee, Sanghyuk ; Sanghyuk Lee</contributor><creatorcontrib>Lee, Hyunhee ; Lim, Heuiseok ; Jo, Jaechoon ; Lee, Sanghyuk ; Sanghyuk Lee</creatorcontrib><description>Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/8273173</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Brain ; Brain cancer ; Engineering ; Image quality ; Image segmentation ; International conferences ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Multimedia ; Synthesis ; Tumors</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Hyunhee Lee et al.</rights><rights>Copyright © 2020 Hyunhee Lee et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b594faf4fb26acbc892cea47bbfe2ee3549ef4bcc35fb9ce1e12c73dc19cb4b93</citedby><cites>FETCH-LOGICAL-c360t-b594faf4fb26acbc892cea47bbfe2ee3549ef4bcc35fb9ce1e12c73dc19cb4b93</cites><orcidid>0000-0003-3540-776X ; 0000-0003-4453-9772 ; 0000-0002-9269-1157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Lee, Sanghyuk</contributor><contributor>Sanghyuk Lee</contributor><creatorcontrib>Lee, Hyunhee</creatorcontrib><creatorcontrib>Lim, Heuiseok</creatorcontrib><creatorcontrib>Jo, Jaechoon</creatorcontrib><title>Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images</title><title>Mathematical problems in engineering</title><description>Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet.</description><subject>Brain</subject><subject>Brain cancer</subject><subject>Engineering</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Multimedia</subject><subject>Synthesis</subject><subject>Tumors</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY_UyyRy1aC9WCreAt7G5m29RmUzeJpf56U1Lw6Gnm8PAO8wbBJcF3hAgxoJjiQUJjRmJ2FPSIiFgoCI-P2x1THhLKPk6Ds6paYUyJIEkvmM_qJtuh0qHpps4LtUYjcOBVnX8DeoV6W_pPZEuPZjtXL6HKf3K3QA9e5Q7Nm6L04QwWBbgaMvTyhsaFWkB1HpxYta7g4jD7wfvT43z4HE6mo_HwfhIaFuE61EJyqyy3mkbKaJNIakDxWGsLFIAJLsFybQwTVksDBAg1McsMkUZzLVk_uO5yN778aqCq01XZeNeeTCnHsUxYgqNW3XbK-LKqPNh049tP_S4lON33lu57Sw-9tfym48vcZWqb_6evOg2tAav-NMVYyoj9As4XeDA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lee, Hyunhee</creator><creator>Lim, Heuiseok</creator><creator>Jo, Jaechoon</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3540-776X</orcidid><orcidid>https://orcid.org/0000-0003-4453-9772</orcidid><orcidid>https://orcid.org/0000-0002-9269-1157</orcidid></search><sort><creationdate>2020</creationdate><title>Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images</title><author>Lee, Hyunhee ; Lim, Heuiseok ; Jo, Jaechoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b594faf4fb26acbc892cea47bbfe2ee3549ef4bcc35fb9ce1e12c73dc19cb4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain</topic><topic>Brain cancer</topic><topic>Engineering</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Multimedia</topic><topic>Synthesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyunhee</creatorcontrib><creatorcontrib>Lim, Heuiseok</creatorcontrib><creatorcontrib>Jo, Jaechoon</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyunhee</au><au>Lim, Heuiseok</au><au>Jo, Jaechoon</au><au>Lee, Sanghyuk</au><au>Sanghyuk Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8273173</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3540-776X</orcidid><orcidid>https://orcid.org/0000-0003-4453-9772</orcidid><orcidid>https://orcid.org/0000-0002-9269-1157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2407983806 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Brain Brain cancer Engineering Image quality Image segmentation International conferences Magnetic resonance imaging Medical imaging Medical research Multimedia Synthesis Tumors |
title | Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Optimal%20Generative%20Network%20for%20Synthesizing%20Brain%20Tumor-Segmented%20MR%20Images&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lee,%20Hyunhee&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/8273173&rft_dat=%3Cproquest_cross%3E2407983806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407983806&rft_id=info:pmid/&rfr_iscdi=true |