Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images
Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which cons...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/8273173 |