Bounds on the localization number
We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conject...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2020-08, Vol.94 (4), p.579-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conjecture of Bosek et al by providing an upper bound on the chromatic number as a function of the localization number. In particular, we show that every graph with ζ(G) ≤ k has degeneracy less than 3k and, consequently, satisfies χ(G) ≤ 3ζ(G). We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22546 |