EEG classification using sparse Bayesian extreme learning machine for brain–computer interface

Mu rhythm is a spontaneous neural response occurring during a motor imagery (MI) task and has been increasingly applied to the design of brain–computer interface (BCI). Accurate classification of MI is usually rather difficult to be achieved since mu rhythm is very weak and likely to be contaminated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-06, Vol.32 (11), p.6601-6609
Hauptverfasser: Jin, Zhichao, Zhou, Guoxu, Gao, Daqi, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mu rhythm is a spontaneous neural response occurring during a motor imagery (MI) task and has been increasingly applied to the design of brain–computer interface (BCI). Accurate classification of MI is usually rather difficult to be achieved since mu rhythm is very weak and likely to be contaminated by other background noises. As an extension of the single layer feedforward network, extreme learning machine (ELM) has recently proven to be more efficient than support vector machine that is a benchmark for MI-related EEG classification. With probabilistic inference, this study introduces a sparse Bayesian ELM (SBELM)-based algorithm to improve the classification performance of MI. SBELM is able to automatically control the model complexity and exclude redundant hidden neurons by combining advantageous of both ELM and sparse Bayesian learning. The effectiveness of SBELM for MI-related EEG classification is validated on a public dataset from BCI Competition IV IIb in comparison with several other competing algorithms. Superior classification accuracy confirms that the proposed SBELM-based algorithm is a promising candidate for performance improvement of an MI BCI.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-018-3735-3