Boundary-free Kernel-smoothed Goodness-of-fit Tests for Data on General Interval
We propose kernel-type smoothed Kolmogorov-Smirnov and Cram\'{e}r-von Mises tests for data on general interval, using bijective transformations. Though not as severe as in the kernel density estimation, utilizing naive kernel method directly to those particular tests will result in boundary pro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose kernel-type smoothed Kolmogorov-Smirnov and Cram\'{e}r-von Mises tests for data on general interval, using bijective transformations. Though not as severe as in the kernel density estimation, utilizing naive kernel method directly to those particular tests will result in boundary problem as well. This happens mostly because the value of the naive kernel distribution function estimator is still larger than \(0\) (or less than \(1\)) when it is evaluated at the boundary points. This situation can increase the errors of the tests especially the second-type error. In this article, we use bijective transformations to eliminate the boundary problem. Some simulation results illustrating the estimator and the tests' performances will be presented in the last part of this article. |
---|---|
ISSN: | 2331-8422 |