The Breit-Wigner series for noncompactly supported potentials on the line

We propose a conjecture stating that for resonances, \(\lambda_j\), of a noncompactly supported potential, the series \(\sum_j \operatorname{Im} \lambda_j/|\lambda_j|^2\) diverges. This series appears in the Breit-Wigner approximation for a compactly supported potential, in which case it converges....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
1. Verfasser: Backus, Aidan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a conjecture stating that for resonances, \(\lambda_j\), of a noncompactly supported potential, the series \(\sum_j \operatorname{Im} \lambda_j/|\lambda_j|^2\) diverges. This series appears in the Breit-Wigner approximation for a compactly supported potential, in which case it converges. We provide heuristic motivation for this conjecture and prove it in several cases.
ISSN:2331-8422