The Breit-Wigner series for noncompactly supported potentials on the line
We propose a conjecture stating that for resonances, \(\lambda_j\), of a noncompactly supported potential, the series \(\sum_j \operatorname{Im} \lambda_j/|\lambda_j|^2\) diverges. This series appears in the Breit-Wigner approximation for a compactly supported potential, in which case it converges....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a conjecture stating that for resonances, \(\lambda_j\), of a noncompactly supported potential, the series \(\sum_j \operatorname{Im} \lambda_j/|\lambda_j|^2\) diverges. This series appears in the Breit-Wigner approximation for a compactly supported potential, in which case it converges. We provide heuristic motivation for this conjecture and prove it in several cases. |
---|---|
ISSN: | 2331-8422 |