Exendin-4 Improves Diabetic Kidney Disease in C57BL/6 Mice Independent of Brown Adipose Tissue Activation

Background. The role of exendin-4 in brown adipose tissue (BAT) activation was not very clear. This study is to verify the role of BAT involved in renal benefits of exendin-4 in diabetes mellitus (DM). Methods. In vivo, C57BL/6 mice were randomly divided into nondiabetic (control) and diabetic group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes research 2020, Vol.2020 (2020), p.1-12, Article 9084567
Hauptverfasser: Li, Ping, Wang, Ling, Xue, Yaoming, Guan, Meiping, Zou, Shaozhou, Fan, Cunxia, Zeng, Yanmei, Wu, Chunyan, Zhang, Hongbin, Lyu, Fuping, Cai, Yingying, Fang, Shu, Zhang, Yudan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. The role of exendin-4 in brown adipose tissue (BAT) activation was not very clear. This study is to verify the role of BAT involved in renal benefits of exendin-4 in diabetes mellitus (DM). Methods. In vivo, C57BL/6 mice were randomly divided into nondiabetic (control) and diabetic groups (DM). The diabetic mice were randomized into a control group (DM-Con), BAT-excision group (DM+Exc), exendin-4-treated group (DM+E4), and BAT-excision plus exendin-4-treated group (DM+Exc+E4). The weight, blood glucose and lipids, 24 h urine albumin and 8-OH-dG, and renal fibrosis were analyzed. In vitro, we investigated the role of exendin-4 in the differentiation process of 3T3-L1 and brown preadipocytes and its effect on the rat mesangial cells induced by oleate. Results. The expressions of UCP-1, PGC-1α, ATGL, and CD36 in BAT of DM mice were all downregulated, which could be upregulated by exendin-4 treatment with significant effects on ATGL and CD36. BAT-excision exacerbated high blood glucose (BG) with no significant effect on the serum lipid level. Exendin-4 significantly lowered the level of serum triglycerides (TG) and low-density lipoprotein- (LDL-) c, 24 h urine albumin, and 8-OH-dG; improved renal fibrosis and lipid accumulation; and activated renal AMP-activated protein kinase (AMPK) in diabetic mice regardless of BAT excision. In vitro, there was no significant effect of exendin-4 on brown or white adipogenesis. However, exendin-4 could improve lipid accumulation and myofibroblast-like phenotype transition of mesangial cells induced by oleate via activating the AMPK pathway. Conclusions. Exendin-4 could decrease the renal lipid deposit and improve diabetic nephropathy via activating the renal AMPK pathway independent of BAT activation.
ISSN:2314-6745
2314-6753
DOI:10.1155/2020/9084567