A Sentiment-Enhanced Hybrid Recommender System for Movie Recommendation: A Big Data Analytics Framework

Movie recommendation in mobile environment is critically important for mobile users. It carries out comprehensive aggregation of user’s preferences, reviews, and emotions to help them find suitable movies conveniently. However, it requires both accuracy and timeliness. In this paper, a movie recomme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Wang, Yibo, Xu, Wei, Wang, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Movie recommendation in mobile environment is critically important for mobile users. It carries out comprehensive aggregation of user’s preferences, reviews, and emotions to help them find suitable movies conveniently. However, it requires both accuracy and timeliness. In this paper, a movie recommendation framework based on a hybrid recommendation model and sentiment analysis on Spark platform is proposed to improve the accuracy and timeliness of mobile movie recommender system. In the proposed approach, we first use a hybrid recommendation method to generate a preliminary recommendation list. Then sentiment analysis is employed to optimize the list. Finally, the hybrid recommender system with sentiment analysis is implemented on Spark platform. The hybrid recommendation model with sentiment analysis outperforms the traditional models in terms of various evaluation criteria. Our proposed method makes it convenient and fast for users to obtain useful movie suggestions.
ISSN:1530-8669
1530-8677
DOI:10.1155/2018/8263704