Secure Green-Oriented Multiuser Scheduling for Wireless-Powered Internet of Things
In this paper, we consider the secure green-oriented multiuser scheduling for the wireless-powered Internet of Things (IoT) scenario, in which multiple source sensors communicate with a controller assisted by an intermediate sensor with the existence of a passive tapping device. Due to the limited e...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2020, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the secure green-oriented multiuser scheduling for the wireless-powered Internet of Things (IoT) scenario, in which multiple source sensors communicate with a controller assisted by an intermediate sensor with the existence of a passive tapping device. Due to the limited energy, all sensors must acquire energy from external power beacons (PBs). Specifically, for the security improvement, we introduce two multiuser scheduling schemes possessing the optimal PB chosen by the relay, i.e., the best source sensor is scheduled in a random way (BSR), while the best source sensor is decided by the best PB (BSBP). Furthermore, for every scheme, we derive the analytical expressions for the secrecy outage probability (SOP) and investigate the secure energy efficiency (SEE) optimization problem with constricted transmission power in PBs. Simulation results reveal that the BSBP scheme provides better secrecy performance, and elevating the PBs quantity or reducing both the ratio of distance from PBs to source users and the total communication distance to some extent is helpful for improving SEE. In addition, the time-switching factor shows an important effect upon secrecy performance of the considered system. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2020/7845107 |