Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch

Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Kwon, Min-Cheol, Choi, Sunwoong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2018
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2018
creator Kwon, Min-Cheol
Choi, Sunwoong
description Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a human activity recognition system that collects data from an off-the-shelf smartwatch and uses an artificial neural network for classification. The proposed system is further enhanced using location information. We consider 11 activities, including both simple and daily activities. Experimental results show that various activities can be classified with an accuracy of 95%.
doi_str_mv 10.1155/2018/2618045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407627943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407627943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-82287562c662f4c1cff162b2b998a0722b841d98d017d28bdf47ce33fa15a4ce3</originalsourceid><addsrcrecordid>eNqF0EFPwjAUB_DGaCKiN8-miUedtG9d2x0JqJgQTVTOS9e1UIQNu07Ct3c4okdP76Xvl9eXP0KXlNxRmiQDIFQOgFNJWHKEejSJSSS5EMe_PU9P0VldLwkhMQHaQ7NXo6t56YKrSlxZPFZutcOTZq1KPNTBfbmww7PalXO8f_HBWaedWuFn0_ifEraV_2iHBX5bKx-2KujFOTqxalWbi0Pto9nD_ftoEk1fHp9Gw2mkGfAQSQApEg6ac7BMU20t5ZBDnqZSEQGQS0aLVBaEigJkXlgmtIljq2iiWNv10XW3d-Orz8bUIVtWjS_bLzNgRHAQKYtbddsp7au69sZmG-_aW3cZJdk-uGwfXHYIruU3HV-4slBb95--6rRpjbHqTwNNUsribzgodiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407627943</pqid></control><display><type>article</type><title>Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kwon, Min-Cheol ; Choi, Sunwoong</creator><contributor>Kim, Dongkyun ; Dongkyun Kim</contributor><creatorcontrib>Kwon, Min-Cheol ; Choi, Sunwoong ; Kim, Dongkyun ; Dongkyun Kim</creatorcontrib><description>Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a human activity recognition system that collects data from an off-the-shelf smartwatch and uses an artificial neural network for classification. The proposed system is further enhanced using location information. We consider 11 activities, including both simple and daily activities. Experimental results show that various activities can be classified with an accuracy of 95%.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/2618045</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accelerometers ; Algorithms ; Artificial neural networks ; Classification ; Classification schemes ; Human activity recognition ; Internet of Things ; Machine learning ; Moving object recognition ; Neural networks ; Performance evaluation ; Sensors ; Servers ; Smartphones ; Smartwatches ; Standard deviation ; Wearable technology ; Writing</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Min-Cheol Kwon and Sunwoong Choi.</rights><rights>Copyright © 2018 Min-Cheol Kwon and Sunwoong Choi. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-82287562c662f4c1cff162b2b998a0722b841d98d017d28bdf47ce33fa15a4ce3</citedby><cites>FETCH-LOGICAL-c426t-82287562c662f4c1cff162b2b998a0722b841d98d017d28bdf47ce33fa15a4ce3</cites><orcidid>0000-0002-9313-2592 ; 0000-0002-8719-8181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Kim, Dongkyun</contributor><contributor>Dongkyun Kim</contributor><creatorcontrib>Kwon, Min-Cheol</creatorcontrib><creatorcontrib>Choi, Sunwoong</creatorcontrib><title>Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch</title><title>Wireless communications and mobile computing</title><description>Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a human activity recognition system that collects data from an off-the-shelf smartwatch and uses an artificial neural network for classification. The proposed system is further enhanced using location information. We consider 11 activities, including both simple and daily activities. Experimental results show that various activities can be classified with an accuracy of 95%.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Human activity recognition</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Sensors</subject><subject>Servers</subject><subject>Smartphones</subject><subject>Smartwatches</subject><subject>Standard deviation</subject><subject>Wearable technology</subject><subject>Writing</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EFPwjAUB_DGaCKiN8-miUedtG9d2x0JqJgQTVTOS9e1UIQNu07Ct3c4okdP76Xvl9eXP0KXlNxRmiQDIFQOgFNJWHKEejSJSSS5EMe_PU9P0VldLwkhMQHaQ7NXo6t56YKrSlxZPFZutcOTZq1KPNTBfbmww7PalXO8f_HBWaedWuFn0_ifEraV_2iHBX5bKx-2KujFOTqxalWbi0Pto9nD_ftoEk1fHp9Gw2mkGfAQSQApEg6ac7BMU20t5ZBDnqZSEQGQS0aLVBaEigJkXlgmtIljq2iiWNv10XW3d-Orz8bUIVtWjS_bLzNgRHAQKYtbddsp7au69sZmG-_aW3cZJdk-uGwfXHYIruU3HV-4slBb95--6rRpjbHqTwNNUsribzgodiU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kwon, Min-Cheol</creator><creator>Choi, Sunwoong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9313-2592</orcidid><orcidid>https://orcid.org/0000-0002-8719-8181</orcidid></search><sort><creationdate>20180101</creationdate><title>Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch</title><author>Kwon, Min-Cheol ; Choi, Sunwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-82287562c662f4c1cff162b2b998a0722b841d98d017d28bdf47ce33fa15a4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Human activity recognition</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Sensors</topic><topic>Servers</topic><topic>Smartphones</topic><topic>Smartwatches</topic><topic>Standard deviation</topic><topic>Wearable technology</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Min-Cheol</creatorcontrib><creatorcontrib>Choi, Sunwoong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Min-Cheol</au><au>Choi, Sunwoong</au><au>Kim, Dongkyun</au><au>Dongkyun Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a human activity recognition system that collects data from an off-the-shelf smartwatch and uses an artificial neural network for classification. The proposed system is further enhanced using location information. We consider 11 activities, including both simple and daily activities. Experimental results show that various activities can be classified with an accuracy of 95%.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/2618045</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9313-2592</orcidid><orcidid>https://orcid.org/0000-0002-8719-8181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-9
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407627943
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accelerometers
Algorithms
Artificial neural networks
Classification
Classification schemes
Human activity recognition
Internet of Things
Machine learning
Moving object recognition
Neural networks
Performance evaluation
Sensors
Servers
Smartphones
Smartwatches
Standard deviation
Wearable technology
Writing
title Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20of%20Daily%20Human%20Activity%20Using%20an%20Artificial%20Neural%20Network%20and%20Smartwatch&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Kwon,%20Min-Cheol&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/2618045&rft_dat=%3Cproquest_cross%3E2407627943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407627943&rft_id=info:pmid/&rfr_iscdi=true