Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch
Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human activity recognition using wearable devices has been actively investigated in a wide range of applications. Most of them, however, either focus on simple activities wherein whole body movement is involved or require a variety of sensors to identify daily activities. In this study, we propose a human activity recognition system that collects data from an off-the-shelf smartwatch and uses an artificial neural network for classification. The proposed system is further enhanced using location information. We consider 11 activities, including both simple and daily activities. Experimental results show that various activities can be classified with an accuracy of 95%. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2018/2618045 |