A Blockchain-Based Contractual Routing Protocol for the Internet of Things Using Smart Contracts
In this paper, we propose a novel blockchain-based contractual routing (BCR) protocol for a network of untrusted IoT devices. In contrast to conventional secure routing protocols in which a central authority (CA) is required to facilitate the identification and authentication of each device, the BCR...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a novel blockchain-based contractual routing (BCR) protocol for a network of untrusted IoT devices. In contrast to conventional secure routing protocols in which a central authority (CA) is required to facilitate the identification and authentication of each device, the BCR protocol operates in a distributed manner with no CA. The BCR protocol utilizes smart contracts to discover a route to a destination or data gateway within heterogeneous IoT networks. Any intermediary device can guarantee a route from a source IoT device to a destination device or gateway. We compare the performance of BCR with that of the Ad-hoc On-Demand Distance Vector (AODV) routing protocol in a network of 14 devices. The results show that the routing overhead of the BCR protocol is 5 times lower compared to AODV at the cost of a slightly lower packet delivery ratio. BCR is fairly resistant to both Blackhole and Greyhole attacks. The results show that the BCR protocol enables distributed routing in heterogeneous IoT networks. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2018/4029591 |