Microbial Fuel Cells, Features and Developments
Current reliance on fossil fuels is unsustainable due to pollution and finite supplies. Microbial cell factories serve as promising alternatives renewable energy resources. Microorganisms generate electricity in their metabolism; act as catalysts for converting the chemical energy into electricity....
Gespeichert in:
Veröffentlicht in: | Current world environment 2015-06, Vol.10 (Special-Issue1), p.637-643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current reliance on fossil fuels is unsustainable due to pollution and finite supplies. Microbial cell factories serve as promising alternatives renewable energy resources. Microorganisms generate electricity in their metabolism; act as catalysts for converting the chemical energy into electricity. In Microbial Fuel Cell (MFC), electrons provided by microorganisms flow through an electrical external circuit transport, create current and power. There are kind of MFCs such as Photosynthetic Alga Microbial Fuel Cells (PAMFCs), Microbial Desalination Cells (MDCs), and Sediment Microbial Fuel Cells (SMFCs). One of the main challenges with current state of MFCs biotechnology is its power output. MFCs with comparable power output can develop by terminal electron acceptors with a low redox potential and increase the cathode surface area. Anode and cathode performance are important factors limiting the power density of MFCs for practical application, but only a little development has been reported in the case of anode chamber. |
---|---|
ISSN: | 0973-4929 2320-8031 |
DOI: | 10.12944/CWE.10.Special-Issue1.77 |