Texture image classification with discriminative neural networks

Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational visual media (Beijing) 2016-12, Vol.2 (4), p.367-377
Hauptverfasser: Song, Yang, Li, Qing, Feng, Dagan, Zou, Ju Jia, Cai, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 4
container_start_page 367
container_title Computational visual media (Beijing)
container_volume 2
creator Song, Yang
Li, Qing
Feng, Dagan
Zou, Ju Jia
Cai, Weidong
description Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.
doi_str_mv 10.1007/s41095-016-0060-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407019888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>67867769504849544852484854</cqvip_id><sourcerecordid>2407019888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0B3hY8r06-k5tS1AoFL_UcYjbbRtvdNtm1-u9N2ao3T_NmeB_DQ-gSwzUGkDeJYdC8BCxKAAGlOEEjAjpvQpDTH8woPUeTlMJrhpJpYHKEbhf-s-ujL8LGLn3h1jYT6uBsF9qm2IduVVQhuRg2ocm3D180vo92nUe3b-N7ukBntV0nPznOMXp5uF9MZ-X8-fFpejcvHeVElNRhCaBlLYn1rLZauUpyYUFU1FJFLCGUyUqIGiyTDritqZUMW_Dcc-7oGF0NvtvY7nqfOvPW9rHJkYYwkIC1Uiqz8MBysU0p-tps8-s2fhkM5tCVGboyuStz6MqIrCGDJmVus_Txz_k_ET0Grdpmucu63yQhlZBSaA5MMc0ZU5xkpDij3_GJeqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407019888</pqid></control><display><type>article</type><title>Texture image classification with discriminative neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</creator><creatorcontrib>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</creatorcontrib><description>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</description><identifier>ISSN: 2096-0433</identifier><identifier>EISSN: 2096-0662</identifier><identifier>DOI: 10.1007/s41095-016-0060-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computer Graphics ; Computer Science ; Computer vision ; Image classification ; Image enhancement ; Image Processing and Computer Vision ; Machine learning ; Neural networks ; Research Article ; Texture ; User Interfaces and Human Computer Interaction</subject><ispartof>Computational visual media (Beijing), 2016-12, Vol.2 (4), p.367-377</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</citedby><cites>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/72296X/72296X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41095-016-0060-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s41095-016-0060-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Zou, Ju Jia</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><title>Texture image classification with discriminative neural networks</title><title>Computational visual media (Beijing)</title><addtitle>Comp. Visual Media</addtitle><addtitle>Computational Visual Media</addtitle><description>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Research Article</subject><subject>Texture</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2096-0433</issn><issn>2096-0662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LAzEQDaJgqf0B3hY8r06-k5tS1AoFL_UcYjbbRtvdNtm1-u9N2ao3T_NmeB_DQ-gSwzUGkDeJYdC8BCxKAAGlOEEjAjpvQpDTH8woPUeTlMJrhpJpYHKEbhf-s-ujL8LGLn3h1jYT6uBsF9qm2IduVVQhuRg2ocm3D180vo92nUe3b-N7ukBntV0nPznOMXp5uF9MZ-X8-fFpejcvHeVElNRhCaBlLYn1rLZauUpyYUFU1FJFLCGUyUqIGiyTDritqZUMW_Dcc-7oGF0NvtvY7nqfOvPW9rHJkYYwkIC1Uiqz8MBysU0p-tps8-s2fhkM5tCVGboyuStz6MqIrCGDJmVus_Txz_k_ET0Grdpmucu63yQhlZBSaA5MMc0ZU5xkpDij3_GJeqM</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Song, Yang</creator><creator>Li, Qing</creator><creator>Feng, Dagan</creator><creator>Zou, Ju Jia</creator><creator>Cai, Weidong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161201</creationdate><title>Texture image classification with discriminative neural networks</title><author>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Research Article</topic><topic>Texture</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Zou, Ju Jia</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computational visual media (Beijing)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Li, Qing</au><au>Feng, Dagan</au><au>Zou, Ju Jia</au><au>Cai, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture image classification with discriminative neural networks</atitle><jtitle>Computational visual media (Beijing)</jtitle><stitle>Comp. Visual Media</stitle><addtitle>Computational Visual Media</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>2</volume><issue>4</issue><spage>367</spage><epage>377</epage><pages>367-377</pages><issn>2096-0433</issn><eissn>2096-0662</eissn><abstract>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s41095-016-0060-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2096-0433
ispartof Computational visual media (Beijing), 2016-12, Vol.2 (4), p.367-377
issn 2096-0433
2096-0662
language eng
recordid cdi_proquest_journals_2407019888
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial Intelligence
Artificial neural networks
Classification
Computer Graphics
Computer Science
Computer vision
Image classification
Image enhancement
Image Processing and Computer Vision
Machine learning
Neural networks
Research Article
Texture
User Interfaces and Human Computer Interaction
title Texture image classification with discriminative neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20image%20classification%20with%20discriminative%20neural%20networks&rft.jtitle=Computational%20visual%20media%20(Beijing)&rft.au=Song,%20Yang&rft.date=2016-12-01&rft.volume=2&rft.issue=4&rft.spage=367&rft.epage=377&rft.pages=367-377&rft.issn=2096-0433&rft.eissn=2096-0662&rft_id=info:doi/10.1007/s41095-016-0060-6&rft_dat=%3Cproquest_cross%3E2407019888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407019888&rft_id=info:pmid/&rft_cqvip_id=67867769504849544852484854&rfr_iscdi=true