Texture image classification with discriminative neural networks
Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide...
Gespeichert in:
Veröffentlicht in: | Computational visual media (Beijing) 2016-12, Vol.2 (4), p.367-377 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 4 |
container_start_page | 367 |
container_title | Computational visual media (Beijing) |
container_volume | 2 |
creator | Song, Yang Li, Qing Feng, Dagan Zou, Ju Jia Cai, Weidong |
description | Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art. |
doi_str_mv | 10.1007/s41095-016-0060-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407019888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>67867769504849544852484854</cqvip_id><sourcerecordid>2407019888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0B3hY8r06-k5tS1AoFL_UcYjbbRtvdNtm1-u9N2ao3T_NmeB_DQ-gSwzUGkDeJYdC8BCxKAAGlOEEjAjpvQpDTH8woPUeTlMJrhpJpYHKEbhf-s-ujL8LGLn3h1jYT6uBsF9qm2IduVVQhuRg2ocm3D180vo92nUe3b-N7ukBntV0nPznOMXp5uF9MZ-X8-fFpejcvHeVElNRhCaBlLYn1rLZauUpyYUFU1FJFLCGUyUqIGiyTDritqZUMW_Dcc-7oGF0NvtvY7nqfOvPW9rHJkYYwkIC1Uiqz8MBysU0p-tps8-s2fhkM5tCVGboyuStz6MqIrCGDJmVus_Txz_k_ET0Grdpmucu63yQhlZBSaA5MMc0ZU5xkpDij3_GJeqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407019888</pqid></control><display><type>article</type><title>Texture image classification with discriminative neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</creator><creatorcontrib>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</creatorcontrib><description>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</description><identifier>ISSN: 2096-0433</identifier><identifier>EISSN: 2096-0662</identifier><identifier>DOI: 10.1007/s41095-016-0060-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computer Graphics ; Computer Science ; Computer vision ; Image classification ; Image enhancement ; Image Processing and Computer Vision ; Machine learning ; Neural networks ; Research Article ; Texture ; User Interfaces and Human Computer Interaction</subject><ispartof>Computational visual media (Beijing), 2016-12, Vol.2 (4), p.367-377</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</citedby><cites>FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/72296X/72296X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41095-016-0060-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s41095-016-0060-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Zou, Ju Jia</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><title>Texture image classification with discriminative neural networks</title><title>Computational visual media (Beijing)</title><addtitle>Comp. Visual Media</addtitle><addtitle>Computational Visual Media</addtitle><description>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Research Article</subject><subject>Texture</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2096-0433</issn><issn>2096-0662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LAzEQDaJgqf0B3hY8r06-k5tS1AoFL_UcYjbbRtvdNtm1-u9N2ao3T_NmeB_DQ-gSwzUGkDeJYdC8BCxKAAGlOEEjAjpvQpDTH8woPUeTlMJrhpJpYHKEbhf-s-ujL8LGLn3h1jYT6uBsF9qm2IduVVQhuRg2ocm3D180vo92nUe3b-N7ukBntV0nPznOMXp5uF9MZ-X8-fFpejcvHeVElNRhCaBlLYn1rLZauUpyYUFU1FJFLCGUyUqIGiyTDritqZUMW_Dcc-7oGF0NvtvY7nqfOvPW9rHJkYYwkIC1Uiqz8MBysU0p-tps8-s2fhkM5tCVGboyuStz6MqIrCGDJmVus_Txz_k_ET0Grdpmucu63yQhlZBSaA5MMc0ZU5xkpDij3_GJeqM</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Song, Yang</creator><creator>Li, Qing</creator><creator>Feng, Dagan</creator><creator>Zou, Ju Jia</creator><creator>Cai, Weidong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161201</creationdate><title>Texture image classification with discriminative neural networks</title><author>Song, Yang ; Li, Qing ; Feng, Dagan ; Zou, Ju Jia ; Cai, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3526-3c170097f72ae4fa98cd756a06d3a382a22347d66f0a47c05af3a741a0e5e55c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Research Article</topic><topic>Texture</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Zou, Ju Jia</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computational visual media (Beijing)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Li, Qing</au><au>Feng, Dagan</au><au>Zou, Ju Jia</au><au>Cai, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture image classification with discriminative neural networks</atitle><jtitle>Computational visual media (Beijing)</jtitle><stitle>Comp. Visual Media</stitle><addtitle>Computational Visual Media</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>2</volume><issue>4</issue><spage>367</spage><epage>377</epage><pages>367-377</pages><issn>2096-0433</issn><eissn>2096-0662</eissn><abstract>Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s41095-016-0060-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-0433 |
ispartof | Computational visual media (Beijing), 2016-12, Vol.2 (4), p.367-377 |
issn | 2096-0433 2096-0662 |
language | eng |
recordid | cdi_proquest_journals_2407019888 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial Intelligence Artificial neural networks Classification Computer Graphics Computer Science Computer vision Image classification Image enhancement Image Processing and Computer Vision Machine learning Neural networks Research Article Texture User Interfaces and Human Computer Interaction |
title | Texture image classification with discriminative neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20image%20classification%20with%20discriminative%20neural%20networks&rft.jtitle=Computational%20visual%20media%20(Beijing)&rft.au=Song,%20Yang&rft.date=2016-12-01&rft.volume=2&rft.issue=4&rft.spage=367&rft.epage=377&rft.pages=367-377&rft.issn=2096-0433&rft.eissn=2096-0662&rft_id=info:doi/10.1007/s41095-016-0060-6&rft_dat=%3Cproquest_cross%3E2407019888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407019888&rft_id=info:pmid/&rft_cqvip_id=67867769504849544852484854&rfr_iscdi=true |