Texture image classification with discriminative neural networks

Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational visual media (Beijing) 2016-12, Vol.2 (4), p.367-377
Hauptverfasser: Song, Yang, Li, Qing, Feng, Dagan, Zou, Ju Jia, Cai, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.
ISSN:2096-0433
2096-0662
DOI:10.1007/s41095-016-0060-6