Pyrimidine Derivative Schiff Base Ligand Stabilized Copper and Nickel Nanoparticles by Two Step Phase Transfer Method; in Vitro Anticancer, Antioxidant, Anti-Microbial and DNA Interactions

Pyrimidine derivative Schiff base ligand (DPMC) stabilized metal nanoparticles of copper (DPMC-CuNPs) and nickel (DPMC-NiNPs) were synthesized by modified Brust-Schiffrin technique, which is a two-step phase transfer assisted synthesis. The prepared metal nanoparticles were confirmed by UV-Visible a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorescence 2020-05, Vol.30 (3), p.471-482
Hauptverfasser: P, Adwin Jose, M, Sankarganesh, J, Dhaveethu Raja, S, Sukkur Saleem
Format: Artikel
Sprache:eng
Schlagworte:
DNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyrimidine derivative Schiff base ligand (DPMC) stabilized metal nanoparticles of copper (DPMC-CuNPs) and nickel (DPMC-NiNPs) were synthesized by modified Brust-Schiffrin technique, which is a two-step phase transfer assisted synthesis. The prepared metal nanoparticles were confirmed by UV-Visible and Infrared spectroscopy. The size, surface morphology and the quality of the DPMC and its MNPs were analyzed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) methods respectively. Electrochemical behavior of the DPMC-CuNPs and DPMC-NiNPs was analyzed by cyclic voltammetry method. DNA binding studies of the synthesized compounds with CT-DNA were examined by four different techniques such as UV-Visible and emission spectroscopy, cyclic voltametry and viscometric measurments. Thermal denaturation and sono-chemical denaturation studies of DNA with the DPMC, DPMC-CuNPs and DPMC-NiNPs results also suggest the synthesized compounds have good DNA binding ability. Various antioxidant scavenging studies results shows that DPMC and its copper and nickel nanoparticles have significant antioxidant activity. Antimicrobial studies of the DPMC and its MNPs were studied by Agar-Agar well diffusion method. Anticancer studies of the DPMC and its MNPs show that the DPMC-CuNPs and DPMC-NiNPs have significant anticancer activity with least toxicity than the standard drug cis-platin. Graphical Abstract
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-020-02510-5