Investigations on the tribological behavior of functionally gradient iron-based brake pad material

In this study, a functionally gradient iron-based brake pad material was developed and the tribological behavior was studied. The functionally gradient specimen had more copper near the base plate and more abrasives towards the top, which provides excellent joint strength and serves the purpose of b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2020-06, Vol.234 (12), p.2474-2486
Hauptverfasser: Govindaraju, M, Megalingam, A, Murugasan, Jayaprakash, Vignesh, R Vaira, Kota, Pavan Kalyan, Ram, A Sumanth, Lakshana, P, Kumar, V Naveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a functionally gradient iron-based brake pad material was developed and the tribological behavior was studied. The functionally gradient specimen had more copper near the base plate and more abrasives towards the top, which provides excellent joint strength and serves the purpose of braking, respectively. The layers had a hybrid composition of metallic materials (Fe, Cu), and abrasives (silicon carbide and aluminum oxide) to improve the strength, wear resistance, and toughness. Graphite was added to stabilize the specimen's thermal and friction characteristics at high temperature. The microstructure, wear rate, and friction coefficient of the functionally gradient specimen and the conventionally sintered specimen were evaluated. The results indicate that the wear resistance of the functionally gradient specimen is higher than the wear resistance of conventional specimen.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406220905858