Efficient and Robust Spike-Driven Deep Convolutional Neural Networks Based on NOR Flash Computing Array
In this article, we propose an efficient and robust spike-driven convolutional neural network (SCNN) based on the NOR flash computing array (NFCA), which is mapped by the pretrained convolutional neural network with the same structure. The spike-driven system eliminates the additional analog-to-digi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2020-06, Vol.67 (6), p.2329-2335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose an efficient and robust spike-driven convolutional neural network (SCNN) based on the NOR flash computing array (NFCA), which is mapped by the pretrained convolutional neural network with the same structure. The spike-driven system eliminates the additional analog-to-digital/digital-to-analog (AD/DA) conversion in the NFCA-based CNN. To study the performance of the hardware implementation, an NFCA-based SCNN for the recognition of the Mixed National Institute of Standards and Technology (MNIST) data set is simulated. Simulation results illustrate that the system achieves 97.94% accuracy with the computing speed of 1 \times 10^{6} frame per second (fps). Compared with the typical mixed-signal NFCA-based CNN, the NFCA-based SCNN saves 97% area and 56% energy consumption. Moreover, the NFCA-based SCNN demonstrates great robustness to 30% image noise with less than 2% accuracy loss. The impact of random telegraph noise (RTN) is also greatly reduced in which less than 1% accuracy decrease can be achieved at the 32-nm technology node. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2020.2987439 |