Using a Time‐Based Subarray Method to Extract and Invert Noise‐Derived Body Waves at Long Beach, California

The reconstruction of body waves from the cross‐correlation of random wavefields has recently emerged as a promising approach to probe the fine‐scale structure of the Earth. However, because of the nature of the ambient noise field, the retrieval of body waves from seismic noise recordings is highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2020-05, Vol.125 (5), p.n/a
Hauptverfasser: Castellanos, Jorge C., Clayton, Robert W., Juarez, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reconstruction of body waves from the cross‐correlation of random wavefields has recently emerged as a promising approach to probe the fine‐scale structure of the Earth. However, because of the nature of the ambient noise field, the retrieval of body waves from seismic noise recordings is highly challenging and has only been successful in a few cases. Here, we use seismic noise data from a 5,200‐node oil‐company survey to reconstruct body waves and determine the velocity structure beneath Long Beach, California. To isolate the body wave energy from the ambient noise field, we divide the entire survey into small‐aperture subarrays and apply a modified double‐beamforming scheme to enhance coherent arrivals within the cross‐correlated waveforms. The resulting beamed traces allow us to identify clear refracted P waves traveling between different subarray pairs, which we then use to construct a high‐resolution 3D velocity model of the region. The inverted velocity model reveals velocity variations of the order of 3% and strong lateral discontinuities caused by the presence of sharp geologic structures such as the Newport‐Inglewood fault (NIF). Additionally, we show that the resolution that is achieved through the use of high‐frequency body waves allows us to illuminate small geometric variations of the NIF that were previously unresolved with traditional passive imaging methods. Key Points Body waves are identified within the ambient noise recorded by a dense seismic array in Long Beach, California Array processing tools are used to retrieve refracted P waves propagating through different sections of the array Traveltime measurements are made to estimate 3D P wave velocities beneath the array
ISSN:2169-9313
2169-9356
DOI:10.1029/2019JB018855