Topological spin-valley filtering effects based on hybrid silicene-like nanoribbons
Topological edge states have crucial applications in nano spintronics and valleytronics devices, while topological inner-edge states have seldom been extensively researched in this field. Based on the inner-edge states of the hybridized zigzag silicene-like nanoribbons, we investigate their transpor...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2020-05, Vol.22 (5), p.53034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Topological edge states have crucial applications in nano spintronics and valleytronics devices, while topological inner-edge states have seldom been extensively researched in this field. Based on the inner-edge states of the hybridized zigzag silicene-like nanoribbons, we investigate their transport properties. We propose two types of spin-valley filters. The first type can generate two different spin-valley polarized currents in output leads, respectively. The second type outputs the specific spin-valley polarized current in only one of the output leads. All these inner-edge states have the spin-valley-momentum locking property. These types of filters can switch the output spin-valley polarizations by modulating the external fields. Besides, we also find that the device size plays a crucial role in designing these spin-valley filters. Moreover, the local current distributions are calculated to visualize the detailed transport process and understand the mechanism. The mechanism lies that the spin-valley polarized current can nearly freely pass through the system with the same momentum, spin and valley degrees of freedom. The small reflection of the current results from the inter-valley scattering. In particular, we also consider the realistic (disorder) effects on the performance of these filters to ensure the robustness of our systems. We believe these spin-valley current filtering effects have potential applications in the future spintronics and valleytronics device designs. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ab84b4 |