Improved regularity for the \(p\)-Poisson equation
In this paper we produce new, optimal, regularity results for the solutions to \(p\)-Poisson equations. We argue through a delicate approximation method, under a smallness regime for the exponent \(p\), that imports information from a limiting profile driven by the Laplace operator. Our arguments co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we produce new, optimal, regularity results for the solutions to \(p\)-Poisson equations. We argue through a delicate approximation method, under a smallness regime for the exponent \(p\), that imports information from a limiting profile driven by the Laplace operator. Our arguments contain a novelty of technical interest, namely a sequential stability result; it connects the solutions to \(p\)-Poisson equations with harmonic functions, yielding improved regularity for the former. Our findings relate a smallness regime with improved \(\mathcal{C}^{1,1-}\)-estimates in the presence of \(L^\infty\)-source terms. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2005.10941 |