Improved regularity for the \(p\)-Poisson equation

In this paper we produce new, optimal, regularity results for the solutions to \(p\)-Poisson equations. We argue through a delicate approximation method, under a smallness regime for the exponent \(p\), that imports information from a limiting profile driven by the Laplace operator. Our arguments co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Pimentel, Edgard A, Rampasso, Giane C, Santos, Makson S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we produce new, optimal, regularity results for the solutions to \(p\)-Poisson equations. We argue through a delicate approximation method, under a smallness regime for the exponent \(p\), that imports information from a limiting profile driven by the Laplace operator. Our arguments contain a novelty of technical interest, namely a sequential stability result; it connects the solutions to \(p\)-Poisson equations with harmonic functions, yielding improved regularity for the former. Our findings relate a smallness regime with improved \(\mathcal{C}^{1,1-}\)-estimates in the presence of \(L^\infty\)-source terms.
ISSN:2331-8422
DOI:10.48550/arxiv.2005.10941