Asymptotics of Solutions of the Nonlinear Oscillator Model with Natural Boundary Conditions
We study the boundary value problem on a segment of length L for a nonlinear second order differential equation of pendulum type with natural boundary conditions generated by the variational problem of minimizing the total energy functional. We show that the number of solutions depends on L and unbo...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-06, Vol.247 (6), p.877-887 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the boundary value problem on a segment of length L for a nonlinear second order differential equation of pendulum type with natural boundary conditions generated by the variational problem of minimizing the total energy functional. We show that the number of solutions depends on L and unboundedly grows as L → ∞. Bibliography: 7 titles. Illustrations: 3 figures. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-04843-9 |