Asymptotics of Solutions of the Nonlinear Oscillator Model with Natural Boundary Conditions

We study the boundary value problem on a segment of length L for a nonlinear second order differential equation of pendulum type with natural boundary conditions generated by the variational problem of minimizing the total energy functional. We show that the number of solutions depends on L and unbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-06, Vol.247 (6), p.877-887
1. Verfasser: Kalyakin, L. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the boundary value problem on a segment of length L for a nonlinear second order differential equation of pendulum type with natural boundary conditions generated by the variational problem of minimizing the total energy functional. We show that the number of solutions depends on L and unboundedly grows as L → ∞. Bibliography: 7 titles. Illustrations: 3 figures.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04843-9