A TOpti simulation for finding fuel saving by optimising propulsion control and power management
The optimisation of load shares between parallel power sources is essential for fuel-efficient propulsion systems. A more complete power management problem can be formulated by including the propeller and its propulsion control. Not only does this allow for a reduction in the propeller load under th...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and technology 2020-06, Vol.25 (2), p.411-425 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimisation of load shares between parallel power sources is essential for fuel-efficient propulsion systems. A more complete power management problem can be formulated by including the propeller and its propulsion control. Not only does this allow for a reduction in the propeller load under the changing operating conditions of the vessel, but also it enables the minimisation of the machinery’s fuel consumption at load- and speed-dependent efficiency models. The need to optimise the design of the machinery in marine vessels has motivated the authors of the current article to develop a design tool for this purpose. The present case study gives an overview of the tool’s features and compares the optimal power management of a fishing boat with different propulsion control variants. Compared with a controllable pitch propeller, which is operated at a fixed speed, reductions in fuel consumption were achieved with reduced propeller speeds. The best fuel savings, approximately 11%, were achieved using a two-speed gearbox with a controllable pitch propeller. |
---|---|
ISSN: | 0948-4280 1437-8213 |
DOI: | 10.1007/s00773-019-00651-2 |