ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data

Repeat expansions are responsible for over 40 monogenic disorders, and undoubtedly more pathogenic repeat expansions remain to be discovered. Existing methods for detecting repeat expansions in short-read sequencing data require predefined repeat catalogs. Recent discoveries emphasize the need for m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2020-04, Vol.21 (1), p.102-14, Article 102
Hauptverfasser: Dolzhenko, Egor, Bennett, Mark F., Richmond, Phillip A., Trost, Brett, Chen, Sai, van Vugt, Joke J. F. A., Nguyen, Charlotte, Narzisi, Giuseppe, Gainullin, Vladimir G., Gross, Andrew M., Lajoie, Bryan R., Taft, Ryan J., Wasserman, Wyeth W., Scherer, Stephen W., Veldink, Jan H., Bentley, David R., Yuen, Ryan K. C., Bahlo, Melanie, Eberle, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Repeat expansions are responsible for over 40 monogenic disorders, and undoubtedly more pathogenic repeat expansions remain to be discovered. Existing methods for detecting repeat expansions in short-read sequencing data require predefined repeat catalogs. Recent discoveries emphasize the need for methods that do not require pre-specified candidate repeats. To address this need, we introduce ExpansionHunter Denovo, an efficient catalog-free method for genome-wide repeat expansion detection. Analysis of real and simulated data shows that our method can identify large expansions of 41 out of 44 pathogenic repeats, including nine recently reported non-reference repeat expansions not discoverable via existing methods.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-020-02017-z