Assessment of population genetics and climatic variability can refine climate‐informed seed transfer guidelines

Restoration guidelines increasingly recognize the importance of genetic attributes in translocating native plant materials (NPMs). However, when species‐specific genetic information is unavailable, seed transfer guidelines use climate‐informed seed transfer zones (CSTZs) as an approximation. While C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Restoration ecology 2020-05, Vol.28 (3), p.485-493
Hauptverfasser: Massatti, Rob, Shriver, Robert K., Winkler, Daniel E., Richardson, Bryce A., Bradford, John B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Restoration guidelines increasingly recognize the importance of genetic attributes in translocating native plant materials (NPMs). However, when species‐specific genetic information is unavailable, seed transfer guidelines use climate‐informed seed transfer zones (CSTZs) as an approximation. While CSTZs may improve how NPMs are developed and/or matched to restoration sites, they overlook genetic factors that can diminish restoration success and/or deteriorate natural patterns of genetic diversity and environmental factors that may introduce unexpected variation. Here, we analyze molecular data and geographic patterns of environmental variability across the western United States and demonstrate how they can refine CSTZs. Using genetic data available for 13 relevant plant species, we found that the probability of mixing genetically differentiated individuals (i.e. from different evolutionary lineages, or populations) was approximately 8% when considering locations separated by 50 km and reached nearly 80% by 500 km, which are distances relevant to ecoregionally constrained CSTZs. Furthermore, climate analyses revealed that geographically proximate locations are likely to maintain environmental similarity, regardless of CSTZ or ecoregion assignment. These results suggest constraining CSTZ‐informed seed transfer decisions by distance may mitigate the opportunity for negative genetic outcomes. Furthermore, environmental variability and/or specificity of NPMs (depending upon the restoration strategy) should be achieved by sourcing NPMs from geographically proximate locations to avoid introducing excessive genetic differentiation. Our results highlight the utility of combining molecular genetic data with other genetic inferences (i.e. of adaptation) to determine how best to transfer seed across restoration species' ranges and develop new restoration materials.
ISSN:1061-2971
1526-100X
DOI:10.1111/rec.13142