A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control

Providing uninterrupted electricity service aboard the urban trains is of vital importance not only for reliable signaling and accurate traffic management but also for ensuring the safety of passengers and supplying emergency equipment such as lighting and signage systems. Hence, to alleviate power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-05, Vol.12 (10), p.3943
Hauptverfasser: Mohammadi Pirouz, Hassan, Hajizadeh, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Providing uninterrupted electricity service aboard the urban trains is of vital importance not only for reliable signaling and accurate traffic management but also for ensuring the safety of passengers and supplying emergency equipment such as lighting and signage systems. Hence, to alleviate power shortages caused by power transmission failures while the uninterruptible power supplies installed in the railway stations are not available, this paper suggests an innovative traction drive topology which is equipped by an onboard hybrid energy storage system for railway vehicles. Besides, to limit currents magnitudes and voltages variations of the feeder during train acceleration and to recuperate braking energy during train deceleration, an energy management strategy is presented. Moreover, a new optimal model predictive method is developed to control the currents of converters and storages as well as the speeds of the two open-end-windings permanent-magnet-synchronous-machines in the intended modular drive, under their constraints. Although to improve control dynamic performance, the control laws are designed as a set of piecewise affine functions from the control signals based on an offline procedure, the controller can still withstand real-time non-measurable disturbances. The effectiveness of proposed multifunctional propulsion topology and the feasibility of the designed controller are demonstrated by simulation and experimental results.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12103943