On the edge of the stable range
We prove a general homological stability theorem for certain families of groups equipped with product maps, followed by two theorems of a new kind that give information about the last two homology groups outside the stable range. (These last two unstable groups are the ‘edge’ in our title.) Applying...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2020-06, Vol.377 (1-2), p.123-181 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a general homological stability theorem for certain families of groups equipped with product maps, followed by two theorems of a new kind that give information about the last two homology groups outside the stable range. (These last two unstable groups are the ‘edge’ in our title.) Applying our results to automorphism groups of free groups yields a new proof of homological stability with an improved stable range, a description of the last unstable group up to a single ambiguity, and a lower bound on the rank of the penultimate unstable group. We give similar applications to the general linear groups of the integers and of the field of order 2, this time recovering the known stability range. The results can also be applied to general linear groups of arbitrary principal ideal domains, symmetric groups, and braid groups. Our methods require us to use field coefficients throughout. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-01955-0 |