A note on \(\sigma\)-model with the target \(S^n\)
Naively the Hilbert space of a sigma model has to be defined as an L^2 space of functions on the space of free loops of the target. This object is not well defined. In this note we study a finite-dimensional approximations L_N(S^n) of the free loops of the sphere S^n. Spaces L_N(S^n) are defined in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Naively the Hilbert space of a sigma model has to be defined as an L^2 space of functions on the space of free loops of the target. This object is not well defined. In this note we study a finite-dimensional approximations L_N(S^n) of the free loops of the sphere S^n. Spaces L_N(S^n) are defined in terms of finite Fourier series. L_N(S^n) finite-dimensional but singular. We compute Riemann and Ricci curvatures of the smooth locus of this space and study Schr\"odinger operator in the case of L_1(S^n) |
---|---|
ISSN: | 2331-8422 |