GEOMETRY OF REGULAR HESSENBERG VARIETIES

Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2020-06, Vol.25 (2), p.305-333
Hauptverfasser: ABE, HIRAKU, FUJITA, NAOKI, ZENG, HAOZHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 2
container_start_page 305
container_title Transformation groups
container_volume 25
creator ABE, HIRAKU
FUJITA, NAOKI
ZENG, HAOZHI
description Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of the structure sheaf of X ( x, H ) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.
doi_str_mv 10.1007/s00031-020-09554-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2403121125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403121125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d8a4bcea2d8de39a070186a2300cfe391c8ddc5b3b3850509976fea0e4eb6173</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gisbAYznbsOGOo3LRSoFLaIpgsx3EQFTTFbgf-PYYgsTHd6em9d7oPoUsCNwQguw0AwAgGChhyzlMsj9CI8ChxKZ6O4w6S4ZQJeorOQtgAkEwIMULXpVrcq1X9nCymSa3KdVXUyUwtl-rhTtVl8ljUc7Waq-U5OunMW3AXv3OM1lO1msxwtSjnk6LClpF8j2UrTdpYZ2grW8dyAxkQKQxlALaLArGybS1vWMMkBw55nonOGXCpawTJ2BhdDb07338cXNjrTX_w23hS0zT-SAmhPLro4LK-D8G7Tu_867vxn5qA_iaiByI6EtE_RLSMITaEQjRvX5z_q_4n9QUu715B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403121125</pqid></control><display><type>article</type><title>GEOMETRY OF REGULAR HESSENBERG VARIETIES</title><source>Springer Nature - Complete Springer Journals</source><creator>ABE, HIRAKU ; FUJITA, NAOKI ; ZENG, HAOZHI</creator><creatorcontrib>ABE, HIRAKU ; FUJITA, NAOKI ; ZENG, HAOZHI</creatorcontrib><description>Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of the structure sheaf of X ( x, H ) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-020-09554-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Homology ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Topological Groups</subject><ispartof>Transformation groups, 2020-06, Vol.25 (2), p.305-333</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d8a4bcea2d8de39a070186a2300cfe391c8ddc5b3b3850509976fea0e4eb6173</citedby><cites>FETCH-LOGICAL-c319t-8d8a4bcea2d8de39a070186a2300cfe391c8ddc5b3b3850509976fea0e4eb6173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00031-020-09554-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00031-020-09554-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>ABE, HIRAKU</creatorcontrib><creatorcontrib>FUJITA, NAOKI</creatorcontrib><creatorcontrib>ZENG, HAOZHI</creatorcontrib><title>GEOMETRY OF REGULAR HESSENBERG VARIETIES</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of the structure sheaf of X ( x, H ) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.</description><subject>Algebra</subject><subject>Homology</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gisbAYznbsOGOo3LRSoFLaIpgsx3EQFTTFbgf-PYYgsTHd6em9d7oPoUsCNwQguw0AwAgGChhyzlMsj9CI8ChxKZ6O4w6S4ZQJeorOQtgAkEwIMULXpVrcq1X9nCymSa3KdVXUyUwtl-rhTtVl8ljUc7Waq-U5OunMW3AXv3OM1lO1msxwtSjnk6LClpF8j2UrTdpYZ2grW8dyAxkQKQxlALaLArGybS1vWMMkBw55nonOGXCpawTJ2BhdDb07338cXNjrTX_w23hS0zT-SAmhPLro4LK-D8G7Tu_867vxn5qA_iaiByI6EtE_RLSMITaEQjRvX5z_q_4n9QUu715B</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>ABE, HIRAKU</creator><creator>FUJITA, NAOKI</creator><creator>ZENG, HAOZHI</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>GEOMETRY OF REGULAR HESSENBERG VARIETIES</title><author>ABE, HIRAKU ; FUJITA, NAOKI ; ZENG, HAOZHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d8a4bcea2d8de39a070186a2300cfe391c8ddc5b3b3850509976fea0e4eb6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABE, HIRAKU</creatorcontrib><creatorcontrib>FUJITA, NAOKI</creatorcontrib><creatorcontrib>ZENG, HAOZHI</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABE, HIRAKU</au><au>FUJITA, NAOKI</au><au>ZENG, HAOZHI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEOMETRY OF REGULAR HESSENBERG VARIETIES</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>305</spage><epage>333</epage><pages>305-333</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of the structure sheaf of X ( x, H ) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-020-09554-8</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2020-06, Vol.25 (2), p.305-333
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2403121125
source Springer Nature - Complete Springer Journals
subjects Algebra
Homology
Lie Groups
Mathematics
Mathematics and Statistics
Topological Groups
title GEOMETRY OF REGULAR HESSENBERG VARIETIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEOMETRY%20OF%20REGULAR%20HESSENBERG%20VARIETIES&rft.jtitle=Transformation%20groups&rft.au=ABE,%20HIRAKU&rft.date=2020-06-01&rft.volume=25&rft.issue=2&rft.spage=305&rft.epage=333&rft.pages=305-333&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-020-09554-8&rft_dat=%3Cproquest_cross%3E2403121125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403121125&rft_id=info:pmid/&rfr_iscdi=true