GEOMETRY OF REGULAR HESSENBERG VARIETIES
Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2020-06, Vol.25 (2), p.305-333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
g
be a complex semisimple Lie algebra. For a regular element
x
in
g
and a Hessenberg space
H
⊆
g
, we consider a regular Hessenberg variety
X
(
x, H
) in the ag variety associated with
g
. We take a Hessenberg space so that
X
(
x, H
) is irreducible, and show that the higher cohomology groups of the structure sheaf of
X
(
x, H
) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-020-09554-8 |