GEOMETRY OF REGULAR HESSENBERG VARIETIES

Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2020-06, Vol.25 (2), p.305-333
Hauptverfasser: ABE, HIRAKU, FUJITA, NAOKI, ZENG, HAOZHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H ⊆ g , we consider a regular Hessenberg variety X ( x, H ) in the ag variety associated with g . We take a Hessenberg space so that X ( x, H ) is irreducible, and show that the higher cohomology groups of the structure sheaf of X ( x, H ) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-020-09554-8