Symmetric Properties for System Involving Uniformly Elliptic Nonlocal Operators
In this paper, we obtain symmetry and monotonicity of positive solutions for the systems involving uniformly elliptic nonlocal operators in a domain (bounded or unbounded) in R n using a direct method of moving planes. Our results include subcritical case, critical case and supercritical case and se...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2020-06, Vol.17 (3), Article 79 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we obtain symmetry and monotonicity of positive solutions for the systems involving uniformly elliptic nonlocal operators in a domain (bounded or unbounded) in
R
n
using a direct method of moving planes. Our results include subcritical case, critical case and supercritical case and seem to be the first symmetric properties of the system involving uniformly elliptic nonlocal operators and containing the gradient of the solutions in the nonlinear terms. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-020-01514-6 |