Synchronization in optically trapped polariton Stuart-Landau networks

We demonstrate tunable dissipative interactions between optically trapped exciton-polariton condensates. We apply annular shaped nonresonant optical beams to both generate and confine each condensate to their respective traps, pinning their natural frequencies. Coupling between condensates is realiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-04, Vol.101 (15), p.1, Article 155402
Hauptverfasser: Harrison, S. L., Sigurdsson, H., Lagoudakis, P. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate tunable dissipative interactions between optically trapped exciton-polariton condensates. We apply annular shaped nonresonant optical beams to both generate and confine each condensate to their respective traps, pinning their natural frequencies. Coupling between condensates is realized through the finite escape rate of coherent polaritons from the traps leading to robust phase locking with neighboring condensates. The coupling is controlled by adjusting the polariton propagation distance between neighbors. This permits us to map out regimes of both strong and weak dissipative coupling, with the former characterized by clear in-phase and antiphase synchronization of the condensates. With robust single-energy occupation governed by dissipative coupling of optically trapped polariton condensates, we present a system that offers a potential optical platform for the optimization of randomly connected XY Hamiltonians.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.101.155402