Congruences for the coefficients of the powers of the Euler Product
Let p k ( n ) be given by the series expansion of the k -th power of the Euler Product ∏ n = 1 ∞ ( 1 - q n ) k = ∑ n = 0 ∞ p k ( n ) q n . By investigating the properties of the modular equations of the second and the third order under the Atkin U -operator, we determine the generating functions of...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2020-06, Vol.52 (2), p.393-420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
k
(
n
)
be given by the series expansion of the
k
-th power of the Euler Product
∏
n
=
1
∞
(
1
-
q
n
)
k
=
∑
n
=
0
∞
p
k
(
n
)
q
n
. By investigating the properties of the modular equations of the second and the third order under the Atkin
U
-operator, we determine the generating functions of
p
8
k
(
2
2
α
n
+
k
(
2
2
α
-
1
)
3
)
(
1
≤
k
≤
3
)
and
p
3
k
(
3
2
β
n
+
k
(
3
2
β
-
1
)
8
)
(
1
≤
k
≤
8
)
in terms of some linear recurring sequences. Combining with a result of Engstrom about the periodicity of linear recurring sequences modulo
m
, we obtain infinite families of congruences for
p
k
(
n
)
modulo any
m
≥
2
, where
1
≤
k
≤
24
and 3|
k
or 8|
k
. Based on these congruences for
p
k
(
n
)
, infinite families of congruences for many partition functions such as the overpartition function,
t
-core partition functions and
ℓ
-regular partition functions are easily obtained. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-019-00179-4 |