Binary and ternary sequences with a few cross correlations

Let m be a positive integer, r ≡ 1 (mod 3) be a prime number, and the order of p modulo r m be ϕ ( r m ) 3 , where ϕ is the Euler function. Let q = p ϕ ( r m ) 3 and d = q − 1 r m . We investigate the cross correlation distribution between a p -ary m -sequence and its d -decimated sequences. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2020-05, Vol.12 (3), p.511-525
Hauptverfasser: Wu, Yansheng, Yue, Qin, Shi, Xueying, Zhu, Xiaomeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let m be a positive integer, r ≡ 1 (mod 3) be a prime number, and the order of p modulo r m be ϕ ( r m ) 3 , where ϕ is the Euler function. Let q = p ϕ ( r m ) 3 and d = q − 1 r m . We investigate the cross correlation distribution between a p -ary m -sequence and its d -decimated sequences. In this paper, we deal with the cases of p = 2 and p = 3. Our results show that the binary sequences have two-valued cross correlations and the ternary sequences have at most three-valued cross correlations, see Theorems 3.2 and 4.2. As a byproduct, we also explicitly compute the Gauss periods η 0 ( q − 1 r m , q ) .
ISSN:1936-2447
1936-2455
DOI:10.1007/s12095-019-00376-4