Binary and ternary sequences with a few cross correlations
Let m be a positive integer, r ≡ 1 (mod 3) be a prime number, and the order of p modulo r m be ϕ ( r m ) 3 , where ϕ is the Euler function. Let q = p ϕ ( r m ) 3 and d = q − 1 r m . We investigate the cross correlation distribution between a p -ary m -sequence and its d -decimated sequences. In this...
Gespeichert in:
Veröffentlicht in: | Cryptography and communications 2020-05, Vol.12 (3), p.511-525 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
m
be a positive integer,
r
≡ 1 (mod 3) be a prime number, and the order of
p
modulo
r
m
be
ϕ
(
r
m
)
3
, where
ϕ
is the Euler function. Let
q
=
p
ϕ
(
r
m
)
3
and
d
=
q
−
1
r
m
. We investigate the cross correlation distribution between a
p
-ary
m
-sequence and its
d
-decimated sequences. In this paper, we deal with the cases of
p
= 2 and
p
= 3. Our results show that the binary sequences have two-valued cross correlations and the ternary sequences have at most three-valued cross correlations, see Theorems 3.2 and 4.2. As a byproduct, we also explicitly compute the Gauss periods
η
0
(
q
−
1
r
m
,
q
)
. |
---|---|
ISSN: | 1936-2447 1936-2455 |
DOI: | 10.1007/s12095-019-00376-4 |