Computer Simulation of Nickel and the Account for Electron Contributions in the Molecular Dynamics Method

Two new potentials are proposed for the embedded-atom model for nickel: one that includes the thermal contribution of electrons to the energy and one that disregards it. The potential parameters are found based on the nickel properties in isobar p = 0 and under shock compression with pressures up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High temperature 2020, Vol.58 (1), p.64-77
1. Verfasser: Belashchenko, D. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two new potentials are proposed for the embedded-atom model for nickel: one that includes the thermal contribution of electrons to the energy and one that disregards it. The potential parameters are found based on the nickel properties in isobar p = 0 and under shock compression with pressures up to ~760 GPa. The best consistency with experimental data is obtained when the electron contribution to the energy is taken into account. The calculated Hugoniot adiabat is in good agreement with the true curve. The inclusion of the electron contribution significantly reduces temperature on the adiabat and increases the cold pressure. The calculated melting curve of the nickel models gradually goes up to 4518 K at 300 GPa and is barely affected by the presence of the electron contribution. The coordinates of the melting section on the shock adiabat are determined (starting at 275.8 GPa and 4422 K and finishing at 297.6 GPa and 4499 K). The phase diagram of nickel with a stable bcc phase region at pressures above 110–130 GPa is proposed. Tables with the energies and pressures of the models at compression ratios up to 1.8182 are presented.
ISSN:0018-151X
1608-3156
DOI:10.1134/S0018151X20010034