ecological role of extremely long-proboscid Neotropical butterflies (Lepidoptera: Hesperiidae) in plant-pollinator networks
Extremely long proboscides of insect flower visitors have been regarded as an example of a coevolutionary arms race, assuming that these insects act as efficient pollinators for their nectar host plants. However, the effect of proboscis length on generalized or specialized flower use remains unclear...
Gespeichert in:
Veröffentlicht in: | Arthropod-plant interactions 2015-08, Vol.9 (4), p.415-424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extremely long proboscides of insect flower visitors have been regarded as an example of a coevolutionary arms race, assuming that these insects act as efficient pollinators for their nectar host plants. However, the effect of proboscis length on generalized or specialized flower use remains unclear and the efficiency of butterfly pollination is ambiguous. Neotropical Hesperiidae feature a surprising variation of proboscis length, which makes them a suitable study system to elucidate the role of extremely long-proboscid insects in plant-pollinator networks. The results of this study show that skippers with longer proboscides visit plant species with deep-tubed flowers to take up food, but do not pollinate them. Skippers equipped with extremely long proboscides seldom include short-tubed flowers in their diet nor visit more plant species than those with shorter proboscides. Our observations indicate that the extremely long-proboscid skippers steal nectar from their preferred nectar host plants, Calathea sp., instead of contributing to their pollination. Finally, we discuss the impact of nectar robbery by these butterflies on their nectar host plants and their legitimate pollinators, euglossine bees. |
---|---|
ISSN: | 1872-8855 1872-8847 |
DOI: | 10.1007/s11829-015-9379-7 |