Lipschitz-free spaces on finite metric spaces
Main results of the paper are as follows: (1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$ . (2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorp...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2020-06, Vol.72 (3), p.774-804, Article 774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 804 |
---|---|
container_issue | 3 |
container_start_page | 774 |
container_title | Canadian journal of mathematics |
container_volume | 72 |
creator | Dilworth, Stephen J. Kutzarova, Denka Ostrovskii, Mikhail I. |
description | Main results of the paper are as follows:
(1) For any finite metric space
$M$
the Lipschitz-free space on
$M$
contains a large well-complemented subspace that is close to
$\ell _{1}^{n}$
.
(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to
$\ell _{1}^{n}$
of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique. |
doi_str_mv | 10.4153/s0008414x19000087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402266360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402266360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ba4e7af3de269195cd23745b015a92821873617f0743364ba9fb38d34c21bd8d3</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMoWFd_gLeC52gmSZPmKIu6QsGDCnsraZpglt22JllQf71ZdvWgp3nzZr4ZeAhdArnmULGbSAipOfAPUGQn5REqgCuBOZXqGBU7D-f58hSdxbjKLRMVFAg3formzacv7IK1ZZy0sbEch9L5wSdbbmwK3hz8c3Ti9Drai0Ododf7u5f5AjdPD4_z2wYbJnjCneZWasd6S4UCVZmeMsmrjkClFa0p1JIJkI5IzjLQaeU6VveMGwpdn8UMXe3vTmF839qY2tW4DUN-2VJOKBWCCZK3YL9lwhhjsK6dgt_o8NkCaXeptM-HVJY_qWRG_mGMTzr5cUhB-_Uv-S9P9g18gmRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402266360</pqid></control><display><type>article</type><title>Lipschitz-free spaces on finite metric spaces</title><source>Cambridge University Press Journals Complete</source><creator>Dilworth, Stephen J. ; Kutzarova, Denka ; Ostrovskii, Mikhail I.</creator><creatorcontrib>Dilworth, Stephen J. ; Kutzarova, Denka ; Ostrovskii, Mikhail I.</creatorcontrib><description>Main results of the paper are as follows:
(1) For any finite metric space
$M$
the Lipschitz-free space on
$M$
contains a large well-complemented subspace that is close to
$\ell _{1}^{n}$
.
(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to
$\ell _{1}^{n}$
of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/s0008414x19000087</identifier><language>eng</language><publisher>Toronto: Cambridge University Press</publisher><subject>Graphs ; Mathematics</subject><ispartof>Canadian journal of mathematics, 2020-06, Vol.72 (3), p.774-804, Article 774</ispartof><rights>Canadian Mathematical Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ba4e7af3de269195cd23745b015a92821873617f0743364ba9fb38d34c21bd8d3</citedby><cites>FETCH-LOGICAL-c364t-ba4e7af3de269195cd23745b015a92821873617f0743364ba9fb38d34c21bd8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dilworth, Stephen J.</creatorcontrib><creatorcontrib>Kutzarova, Denka</creatorcontrib><creatorcontrib>Ostrovskii, Mikhail I.</creatorcontrib><title>Lipschitz-free spaces on finite metric spaces</title><title>Canadian journal of mathematics</title><description>Main results of the paper are as follows:
(1) For any finite metric space
$M$
the Lipschitz-free space on
$M$
contains a large well-complemented subspace that is close to
$\ell _{1}^{n}$
.
(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to
$\ell _{1}^{n}$
of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.</description><subject>Graphs</subject><subject>Mathematics</subject><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkEFLxDAQhYMoWFd_gLeC52gmSZPmKIu6QsGDCnsraZpglt22JllQf71ZdvWgp3nzZr4ZeAhdArnmULGbSAipOfAPUGQn5REqgCuBOZXqGBU7D-f58hSdxbjKLRMVFAg3formzacv7IK1ZZy0sbEch9L5wSdbbmwK3hz8c3Ti9Drai0Ododf7u5f5AjdPD4_z2wYbJnjCneZWasd6S4UCVZmeMsmrjkClFa0p1JIJkI5IzjLQaeU6VveMGwpdn8UMXe3vTmF839qY2tW4DUN-2VJOKBWCCZK3YL9lwhhjsK6dgt_o8NkCaXeptM-HVJY_qWRG_mGMTzr5cUhB-_Uv-S9P9g18gmRc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Dilworth, Stephen J.</creator><creator>Kutzarova, Denka</creator><creator>Ostrovskii, Mikhail I.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>202006</creationdate><title>Lipschitz-free spaces on finite metric spaces</title><author>Dilworth, Stephen J. ; Kutzarova, Denka ; Ostrovskii, Mikhail I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ba4e7af3de269195cd23745b015a92821873617f0743364ba9fb38d34c21bd8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Graphs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dilworth, Stephen J.</creatorcontrib><creatorcontrib>Kutzarova, Denka</creatorcontrib><creatorcontrib>Ostrovskii, Mikhail I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dilworth, Stephen J.</au><au>Kutzarova, Denka</au><au>Ostrovskii, Mikhail I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz-free spaces on finite metric spaces</atitle><jtitle>Canadian journal of mathematics</jtitle><date>2020-06</date><risdate>2020</risdate><volume>72</volume><issue>3</issue><spage>774</spage><epage>804</epage><pages>774-804</pages><artnum>774</artnum><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>Main results of the paper are as follows:
(1) For any finite metric space
$M$
the Lipschitz-free space on
$M$
contains a large well-complemented subspace that is close to
$\ell _{1}^{n}$
.
(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to
$\ell _{1}^{n}$
of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.</abstract><cop>Toronto</cop><pub>Cambridge University Press</pub><doi>10.4153/s0008414x19000087</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-414X |
ispartof | Canadian journal of mathematics, 2020-06, Vol.72 (3), p.774-804, Article 774 |
issn | 0008-414X 1496-4279 |
language | eng |
recordid | cdi_proquest_journals_2402266360 |
source | Cambridge University Press Journals Complete |
subjects | Graphs Mathematics |
title | Lipschitz-free spaces on finite metric spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz-free%20spaces%20on%20finite%20metric%20spaces&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Dilworth,%20Stephen%20J.&rft.date=2020-06&rft.volume=72&rft.issue=3&rft.spage=774&rft.epage=804&rft.pages=774-804&rft.artnum=774&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/s0008414x19000087&rft_dat=%3Cproquest_cross%3E2402266360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402266360&rft_id=info:pmid/&rfr_iscdi=true |