Lipschitz-free spaces on finite metric spaces

Main results of the paper are as follows: (1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$ . (2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2020-06, Vol.72 (3), p.774-804, Article 774
Hauptverfasser: Dilworth, Stephen J., Kutzarova, Denka, Ostrovskii, Mikhail I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Main results of the paper are as follows: (1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$ . (2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs. Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.
ISSN:0008-414X
1496-4279
DOI:10.4153/s0008414x19000087