Lipschitz-free spaces on finite metric spaces
Main results of the paper are as follows: (1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$ . (2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorp...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2020-06, Vol.72 (3), p.774-804, Article 774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Main results of the paper are as follows:
(1) For any finite metric space
$M$
the Lipschitz-free space on
$M$
contains a large well-complemented subspace that is close to
$\ell _{1}^{n}$
.
(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to
$\ell _{1}^{n}$
of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.
Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/s0008414x19000087 |