Controlling quantum coherence of a two-component Bose–Einstein condensate via an impurity atom
We propose a scheme to control quantum coherence of a two-component Bose–Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single-atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2020-06, Vol.19 (6), Article 188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a scheme to control quantum coherence of a two-component Bose–Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single-atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time evolution of quantum coherence of the two-component BEC and find that collapse–revival patterns of quantum coherence can be manipulated by the initial-state parameters of the impurity atom and the impurity–BEC interaction strengths. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-020-02689-3 |