Periodic Solutions of Symmetric Hamiltonian Systems

This paper is devoted to the study of periodic solutions of a Hamiltonian system z ˙ ( t ) = J ∇ H ( z ( t ) ) , where H is symmetric under an action of a compact Lie group. We are looking for periodic solutions in a neighborhood of non-isolated critical points of H which form orbits of the group ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-08, Vol.237 (2), p.921-950
1. Verfasser: Strzelecki, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of periodic solutions of a Hamiltonian system z ˙ ( t ) = J ∇ H ( z ( t ) ) , where H is symmetric under an action of a compact Lie group. We are looking for periodic solutions in a neighborhood of non-isolated critical points of H which form orbits of the group action. We prove a Lyapunov-type theorem for symmetric Hamiltonian systems.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-020-01522-6