Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence

We explore the suitability of deep learning to capture the physics of subgrid-scale ideal magnetohydrodynamics turbulence of 2D simulations of the magnetized Kelvin-Helmholtz instability. We produce simulations at different resolutions to systematically quantify the performance of neural network mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-04, Vol.101 (8), Article 084024
Hauptverfasser: Rosofsky, Shawn G., Huerta, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the suitability of deep learning to capture the physics of subgrid-scale ideal magnetohydrodynamics turbulence of 2D simulations of the magnetized Kelvin-Helmholtz instability. We produce simulations at different resolutions to systematically quantify the performance of neural network models to reproduce the physics of these complex simulations. We compare the performance of our neural networks with gradient models, which are extensively used in the magnetohydrodynamic literature. Our findings indicate that neural networks significantly outperform gradient models in accurately computing the subgrid-scale tensors that encode the effects of magnetohydrodynamics turbulence. To the best of our knowledge, this is the first exploratory study on the use of deep learning to learn and reproduce the physics of magnetohydrodynamics turbulence.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.101.084024