Investigation Simulation Based on Bio-Energy Local Area Photosensitizer in Increasing Dye-Sensitized Solar Cells (DSSC) Performance

The photosensitizer is an important part of Dye-Sensitized Solar Cells (DSSC). Photosensitizers function like photosynthesis by absorbing sunlight and turning it into energy. Photosensitizers also contribute to the efficiency of improving DSSC performance. This research is a continuation of previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2020-03, Vol.981, p.66-72
Hauptverfasser: Kartikasari, Henry Ayu, Harsono, Soni Sisbudi, Alviati, Nova, Supriyanto, Edy, Sutjipto, Agus Geter Edy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photosensitizer is an important part of Dye-Sensitized Solar Cells (DSSC). Photosensitizers function like photosynthesis by absorbing sunlight and turning it into energy. Photosensitizers also contribute to the efficiency of improving DSSC performance. This research is a continuation of previous research to find a candidate for natural and environmentally friendly photosensitizer (bio-energy) based local area in Indonesia. The photosensitizer used in this simulation is Tagetes erecta, Nyctanthes arbor-tritis, Brassica rapa Sub. Sp pekinensis, Delonix regia, Lawsonia inermis, Callistemon citrinus, and Daucus Carota. The purpose of this simulation is finding several candidates for bio-energy local area photosensitizer that produce high efficiency by displaying J-V curves and P-V curves. The highest efficiency was produced by photosensitizer Tagetes erecta at 1.5% [Voc 0.6385 Volt, 0.00383 A / cm2 Jsc, FF 0.605 and Pmax 0.00148 Watt], while the lowest efficiency was produced by photosensitizer Callistemon citrinus at 1.1% [Voc 0.6162 Volt, Jsc 0.0032 A / cm2, FF 0.557 and Pmax 0,0011 Watts]. These simulation results perform that one of reason give influence at DSSC performance is the absorption coefficient value in each bio-energy local area photosensitizer. The absorption coefficient also determines how much efficiency is produced and how much the photosensitizer's ability to absorb sunlight.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.981.66