Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation

A new approach to direct quantitative detection of small molecules (haptens) by dynamic light scattering biosensing is presented. The proposed technique implements a homogeneous competitive immunoassay and is based on optical detection of specific inhibition of nanoparticle aggregation induced by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020-05, Vol.412 (14), p.3423-3431
Hauptverfasser: Levin, A. D., Ringaci, A., Alenichev, M. K., Drozhzhennikova, E. B., Shevchenko, K. G., Cherkasov, V. R., Nikitin, M. P., Nikitin, P. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach to direct quantitative detection of small molecules (haptens) by dynamic light scattering biosensing is presented. The proposed technique implements a homogeneous competitive immunoassay and is based on optical detection of specific inhibition of nanoparticle aggregation induced by the analyte in a sample. The technique performance was tested both in buffer and milk for detection of chloramphenicol – antibiotic relevant to food safety diagnostics. Good specificity, sensitivity (LOD in milk is 2.4 ng/ml), precision (4.0 ± 1.2%), ruggedness (8.3%), and 96% recovery in conjunction with a record wide dynamic range (3 orders of magnitude) of the nanosensing technique were demonstrated. Such characteristics complemented by the assay simplicity (no washing step) and a short assay time make the approach attractive for application as an analytical platform for point-of-care and field-oriented diagnostics. Graphical abstract
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-020-02605-9