Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation
A new approach to direct quantitative detection of small molecules (haptens) by dynamic light scattering biosensing is presented. The proposed technique implements a homogeneous competitive immunoassay and is based on optical detection of specific inhibition of nanoparticle aggregation induced by th...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2020-05, Vol.412 (14), p.3423-3431 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new approach to direct quantitative detection of small molecules (haptens) by dynamic light scattering biosensing is presented. The proposed technique implements a homogeneous competitive immunoassay and is based on optical detection of specific inhibition of nanoparticle aggregation induced by the analyte in a sample. The technique performance was tested both in buffer and milk for detection of chloramphenicol – antibiotic relevant to food safety diagnostics. Good specificity, sensitivity (LOD in milk is 2.4 ng/ml), precision (4.0 ± 1.2%), ruggedness (8.3%), and 96% recovery in conjunction with a record wide dynamic range (3 orders of magnitude) of the nanosensing technique were demonstrated. Such characteristics complemented by the assay simplicity (no washing step) and a short assay time make the approach attractive for application as an analytical platform for point-of-care and field-oriented diagnostics.
Graphical abstract |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-020-02605-9 |