Efficient multiquality super‐resolution using a deep convolutional neural network for an FPGA implementation

We propose an efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Society for Information Display 2020-05, Vol.28 (5), p.428-439
Hauptverfasser: Kim, Min Beom, Lee, Sanglyn, Kim, Ilho, Hong, Hee Jung, Kim, Chang Gone, Yoon, Soo Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to compress the neural network. Efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input. First we train Single Quality‐SR (SQSR) for each quality and optimize with network trimming. Then we insert selection layers between concatenated SQSRs and train them for analyzing the input quality and choosing appropriate deconvolution features automatically.
ISSN:1071-0922
1938-3657
DOI:10.1002/jsid.902